Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Infektsionnye Bolezni ; 21(1):5-9, 2023.
Article in Russian | EMBASE | ID: covidwho-20241373

ABSTRACT

Objective. To assess the T-cell immune status against SARS-CoV-2 in HIV patients with or without antiretroviral therapy. Patients and methods. The study included 21 HIV patients who had laboratory-confirmed COVID-19 between September and December 2021 without previous immunization against SARS-CoV-2. The characteristics of HIV infection (CD4-lymphocytes count, HIV viral load in blood plasma, the presence of antiretroviral therapy) and COVID-19 (the severity degree and duration of the disease) were analyzed, the T-cell immune response to SARS-CoV-2 was assessed using the ELISPOT method 1 month after COVID-19. Statistical analysis was carried out by non-parametric methods (Mann-Whitney U test, Spearman's rank correlation coefficient) using the IBM SPSS Statistics 22 software package. Results. The study showed a more favorable course of COVID-19 in HIV-infected persons who achieved HIV suppression in the blood: a mild form of the disease was significantly more common, and the virus was eliminated faster. T-cell immune response to SARS-CoV-2 was recorded more frequently in these patients. Significant correlation of T-cell immune status with the CD4-lymphocytes count and HIV suppression in the blood was revealed. Conclusion. Thus, T-cell immune response to SARS-CoV-2 as assessed using the ELISPOT method was registered significantl.Copyright © 2023, Dynasty Publishing House. All rights reserved.

2.
Front Immunol ; 14: 1070077, 2023.
Article in English | MEDLINE | ID: covidwho-2289185

ABSTRACT

The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens-in particular, common cold coronaviruses-impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , T-Lymphocytes , Immunity, Cellular
3.
Cent Eur J Immunol ; 47(4): 357-361, 2022.
Article in English | MEDLINE | ID: covidwho-2268519

ABSTRACT

The association of immunocompromised patients and severity of COVID-19 infection is not well established. According to the Centers for Disease Control and Prevention (CDC), primary immune deficiencies (PIDs) are among the conditions that can predispose to a more severe course of COVID-19. We report the clinical course and immunological evaluation of five patients with common variable immune deficiency (CVID) who have experienced SARS-CoV-2 virus. Here we assess the severity of the infection, the immunophenotypic profile of the major lymphocyte subgroups, the nonspecific T-cell functional capacity and the SARS-CoV-2 specific effector T-cell immune response. Our results showed that the course of COVID-19 infection in CVID patients was mild to moderate and none of them developed a critical form of the disease. All patients developed a specific SARS-CoV-2 T cell immune response. Lymphopenia as well as impaired T-cell response prior to COVID-19 appeared to be related to a more severe course of the infection. Data on a good specific T cell response against SARS-CoV-2 in CVID patients will help to make the right vaccination decision and establish its efficacy. Clinical outcome even in these individual cases was in agreement with the therapeutic recommendations underlining that regular maintenance with subcutaneous immunoglobulins can be beneficial against immune system overreaction and a severe disease course and convalescent plasma is a treatment option in patients with CVID and COVID-19.

4.
Int J Infect Dis ; 128: 112-120, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2242189

ABSTRACT

OBJECTIVES: The CoV2-001 phase I randomized trial evaluated the safety and immunogenicity of the GLS-5310 bi-cistronic DNA vaccine through 48 weeks of follow-up. DESIGN: A total of 45 vaccine-naïve participants were recruited between December 31, 2020, and March 30, 2021. GLS-5310, encoding for the SARS-CoV-2 spike and open reading frame 3a (ORF3a) proteins, was administered intradermally at 0.6 mg or 1.2 mg per dose, followed by application of the GeneDerm suction device as part of a two-dose regimen spaced either 8 or 12 weeks between vaccinations. RESULTS: GLS-5310 was well tolerated with no serious adverse events reported. Antibody and T cell responses were dose-independent. Anti-spike antibodies were induced in 95.5% of participants with an average geometric mean titer of ∼480 four weeks after vaccination and declined minimally through 48 weeks. Neutralizing antibodies were induced in 55.5% of participants with post-vaccination geometric mean titer of 28.4. T cell responses were induced in 97.8% of participants, averaging 716 site forming units/106 cells four weeks after vaccination, increasing to 1248 at week 24, and remaining greater than 1000 through 48 weeks. CONCLUSION: GLS-5310 administered with the GeneDerm suction device was well tolerated and induced high levels of binding antibodies and T-cell responses. Antibody responses were similar to other DNA vaccines, whereas T cell responses were many-fold greater than DNA and non-DNA vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2 , Suction , Viral Vaccines , COVID-19 Vaccines/administration & dosage
5.
PeerJ ; 11: e14707, 2023.
Article in English | MEDLINE | ID: covidwho-2203240

ABSTRACT

In mid-2021, the SARS-CoV-2 Delta variant caused the third wave of the COVID-19 pandemic in several countries worldwide. The pivotal studies were aimed at studying changes in the efficiency of neutralizing antibodies to the spike protein. However, much less attention was paid to the T-cell response and the presentation of virus peptides by MHC-I molecules. In this study, we compared the features of the HLA-I genotype in symptomatic patients with COVID-19 in the first and third waves of the pandemic. As a result, we could identify the diminishing of carriers of the HLA-A*01:01 allele in the third wave and demonstrate the unique properties of this allele. Thus, HLA-A*01:01-binding immunoprevalent epitopes are mostly derived from ORF1ab. A set of epitopes from ORF1ab was tested, and their high immunogenicity was confirmed. Moreover, analysis of the results of single-cell phenotyping of T-cells in recovered patients showed that the predominant phenotype in HLA-A*01:01 carriers is central memory T-cells. The predominance of T-lymphocytes of this phenotype may contribute to forming long-term T-cell immunity in carriers of this allele. Our results can be the basis for highly effective vaccines based on ORF1ab peptides.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Alleles , Pandemics/prevention & control , Epitopes, T-Lymphocyte , CD8-Positive T-Lymphocytes , HLA-A Antigens
6.
Vaccines (Basel) ; 10(9)2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2044019

ABSTRACT

This study aimed to assess the magnitude of anti-SARS-CoV-2 immunoglobulin G (IgG) titers and Interferon-Gamma Release Assay (IGRA) test results following administration of booster BNT162b2 in 48 ChAd-primed participants (vaccination schedule: ChAd/ChAd/BNT). Whole blood samples were collected: first, before and second, 21 days after the booster dose. The IgG level was measured using chemiluminescent immunoassay; the intensity of the T-cell response-IFNγ concentration-was assessed using IGRA test. At 21 days after the booster, all subjects achieved reactive/positive anti-SARS-CoV-2 IgG, and IGRA test results showed a significant increase compared to the results before booster administration. We compared the results before and after the booster between participants with and without prior history of COVID-19. The IFNγ concentrations in both cohorts were higher in convalescents (both before booster and 21 days after). The IgG titers were subtly lower in COVID-19 convalescents than in naïve but without statistical significance. Data on cell-mediated immunity are scarce, especially with regard to the general population. A better understanding of the complexity of the immune response to SARS-CoV-2 could contribute to developing more effective vaccination strategies.

7.
Cell Rep Med ; 3(10): 100764, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2031747

ABSTRACT

Omicron has become the globally dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, creating additional challenges due to its ability to evade neutralization. Here, we report that neutralizing antibodies against Omicron variants are undetected following COVID-19 infection with ancestral or past SARS-CoV-2 variant viruses or after two-dose mRNA vaccination. Compared with two-dose vaccination, a three-dose vaccination course induces broad neutralizing antibody responses with improved durability against different SARS-CoV-2 variants, although neutralizing antibody titers against Omicron remain low. Intriguingly, among individuals with three-dose vaccination, Omicron breakthrough infection substantially augments serum neutralizing activity against a broad spectrum of SARS-CoV-2 variants, including Omicron variants BA.1, BA.2, and BA.5. Additionally, after Omicron breakthrough infection, memory T cells respond to the spike proteins of both ancestral and Omicron SARS-CoV-2 by producing cytokines with polyfunctionality. These results suggest that Omicron breakthrough infection following three-dose mRNA vaccination induces pan-SARS-CoV-2 immunity that may protect against emerging SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibody Formation , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Cytokines , RNA, Messenger
8.
Front Immunol ; 13: 920627, 2022.
Article in English | MEDLINE | ID: covidwho-2022711

ABSTRACT

Background: The pathophysiology of long-COVID remains unknown, and information is particularly limited for symptoms of very long duration. We aimed to assess the serological, T-cell immune responses and ANA titers of patients with long-COVID-19 syndrome of 1-year duration. Methods: Prospective, longitudinal study of hospitalized COVID-19 patients followed-up for 12 months. Sequential blood samples and COVID-19 symptom questionnaires (CSQ) were obtained, and humoral and cellular immune responses, antinuclear antibodies (ANA) and inflammation biomarkers were analyzed. Results: Of 154 patients discharged from hospital, 72 non-vaccinated with available CSQ in all visits were included. Of them, 14 (19.4%) reported persistent symptoms both at 6-months and 12-months, mainly asthenia (15.3%), myalgia (13.9%), and difficulty concentrating/memory loss (13.9%). Symptomatic patients were more frequently women, smokers, showed higher WHO severity score, and a trend to higher ICU admission. In the adjusted analysis, long-COVID syndrome was associated with lower frequency of detectable neutralizing antibodies (adjusted hazard ratio [aHR] 0.98; 95% confidence interval [CI], 0.97-0.99) and lower SARS-CoV-2-S1/S2 titers (aHR [95%CI] 0.14 [0.03-0.65]). T-cell immune response measured with a SARS-CoV-2-interferon-γ release assay was not different between groups. There was a higher frequency of positive ANA titers (≥160) in symptomatic patients (57.1% vs 29.3%, p=0.04), that was attenuated after adjustment aHR [95% CI] 3.37 [0.84-13.57], p=0.087. Levels of C-reactive protein and D-dimer were higher during follow-up in symptomatic patients, but with no differences at 12 months. Conclusion: Patients with 1-year duration long-COVID-19 syndrome exhibit a distinct immunologic phenotype that includes a poorer SARS-CoV-2 antibody response, low-degree chronic inflammation that tends to mitigate, and autoimmunity.


Subject(s)
COVID-19 , COVID-19/complications , Female , Humans , Inflammation , Longitudinal Studies , Phenotype , Prospective Studies , SARS-CoV-2 , Viral Envelope Proteins , Post-Acute COVID-19 Syndrome
9.
J Clin Virol ; 154: 105236, 2022 09.
Article in English | MEDLINE | ID: covidwho-1983387

ABSTRACT

The primary objective of this study was to establish a 1-year follow-up of patients after mild COVID-19 with no or only short-term detection of antibodies shortly after disease. At 1 year after disease, cellular memory against SARS-CoV-2, as measured by IFN-γ release by T cells, was detected in 76% (38/50) of participants. The data suggest that even if antibody levels decline after the primary infection has resolved, a cellular immune response may be detectable for longer.


Subject(s)
COVID-19 , Antibodies, Viral , Follow-Up Studies , Humans , Immunity, Cellular , Immunity, Humoral , SARS-CoV-2
10.
Heliyon ; 8(7): e09863, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1914442

ABSTRACT

Background: A robust efficiency of mRNA vaccines against coronavirus disease-2019 has been demonstrated, however, the intended long-term protection against SARS-CoV-2 has been challenged by the waning humoral and cellular immunity over time, leading to a third vaccination dose recommendation for immunocompetent individuals, six months after completion of primary mRNA vaccination. Methods: We here measured humoral responses via an immunoassay measuring SARS-CoV-2 neutralizing antibodies and T-cell responses using Elispot for interferon-γ 1- and 8- months post full BNT162b2 vaccination, in 10 health-care professionals. To explore whether the declining abundance of coronavirus-specific T-cells (CoV-2-STs) truly reflects decreased capacity for viral control, rather than the attenuating viral stimulus over time, we modeled ex vivo the T-cellular response upon viral challenge in fully vaccinated immunocompetent individuals, 1- and 8-months post BNT162b2. Findings: Notwithstanding the declining CoV-2-neutralizing antibodies and CoV-2-STs, re-challenged CoV-2-STs, 1- and 8-months post vaccination, presented similar functional characteristics including high cytotoxicity against both the unmutated virus and the delta variant. Interpretation: These findings suggest robust and sustained cellular immune response upon SARS-CοV-2 antigen exposure, 8 months post mRNA vaccination, despite declining CοV-2-STs over time in the presence of an attenuating viral stimulus.

11.
Vaccines (Basel) ; 10(5)2022 Apr 19.
Article in English | MEDLINE | ID: covidwho-1792360

ABSTRACT

Inactivated SARS-CoV-2 vaccine (CoronaVac) is commonly used in national immunization programs. However, the immune response significantly declines within a few months. Our study assessed the immune response against SARS-CoV-2 after receiving booster shots of BNT162b2 or ChAdOx1 among health care workers who previously received CoronaVac as their primary immunization. Fifty-six participants who received ChAdOx1 and forty-two participants who received BNT162b2 were enrolled into this study, which evaluated immune responses, including anti-SARS-CoV-2 spike total antibodies (Elecsys®), surrogated viral neutralization test (sVNT) to ancestral strain (cPass™; GenScript), five variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) (Luminex; multiplex sVNT) and the ELISpot with spike (S1 and S2) peptide pool against the ancestral SARS-CoV-2 strain. The samples were analyzed at baseline, 4, and 12 weeks after primary immunization, as well as 4 and 12 weeks after receiving the booster. This study showed a significant increase in anti-SARS-CoV-2 spike total antibodies, sVNT, and T-cell immune response after the booster, including against the Omicron variant. Immune responses rapidly decreased in the booster group at 12 weeks after booster but were still higher than post-primary vaccination. A fourth dose or a second booster should be recommended, particularly in health care workers.

12.
Front Immunol ; 13: 868915, 2022.
Article in English | MEDLINE | ID: covidwho-1793012

ABSTRACT

Background: Immunomodulatory/immunosuppressive activity of multiple sclerosis (MS) disease modifying therapies (DMTs) might affect immune responses to SARS-CoV-2 exposure or vaccination in patients with MS (PwMS). We evaluated the effect of DMTs on humoral and cell-mediated immune responses to 2 and 3 vaccinations and the longevity of SARS-Cov-2 IgG levels in PwMS. Methods: 522 PwMS and 68 healthy controls vaccinated with BNT162b2-Pfizer mRNA vaccine against SARS-CoV-2, or recovering from COVID-19, were recruited in a nation-wide multi-center study. Blood was collected at 3 time-points: 2-16 weeks and ~6 months post 2nd vaccination and 1-16 weeks following 3rd vaccination. Serological responses were measured by quantifying IgG levels against the spike-receptor-binding-domain of SARS-CoV-2, and cellular responses (in a subgroup analysis) by quantifying IFNγ secretion in blood incubated with COVID-19 spike-antigen. Results: 75% PwMS were seropositive post 2nd or 3rd vaccination. IgG levels decreased by 82% within 6 months from vaccination (p<0.0001), but were boosted 10.3 fold by the 3rd vaccination (p<0.0001), and 1.8 fold compared to ≤3m post 2nd vaccination (p=0.025). Patients treated with most DMTs were seropositive post 2nd and 3rd vaccinations, however only 38% and 44% of ocrelizumab-treated patients and 54% and 46% of fingolimod-treated patients, respectively, were seropositive. Similarly, in COVID-19-recovered patients only 54% of ocrelizumab-treated, 75% of fingolimod-treated and 67% of cladribine-treated patients were seropositive. A time interval of ≥5 months between ocrelizumab infusion and vaccination was associated with higher IgG levels (p=0.039 post-2nd vaccination; p=0.036 post-3rd vaccination), and with higher proportions of seropositive patients. Most fingolimod- and ocrelizumab-treated patients responded similarly to 2nd and 3rd vaccination. IFNγ-T-cell responses were detected in 89% and 63% of PwMS post 2nd and 3rd vaccination, however in only 25% and 0% of fingolimod-treated patients, while in 100% and 86% of ocrelizumab-treated patients, respectively. Conclusion: PwMS treated with most DMTs developed humoral and T-cell responses following 2 and 3 mRNA SARS-CoV-2 vaccinations. Fingolimod- or ocrelizumab-treated patients had diminished humoral responses, and fingolimod compromised the cellular responses, with no improvement after a 3rd booster. Vaccination following >5 months since ocrelizumab infusion was associated with better sero-positivity. These findings may contribute to the development of treatment-stratified vaccination guidelines for PwMS.


Subject(s)
COVID-19 , Multiple Sclerosis , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Fingolimod Hydrochloride/therapeutic use , Humans , Immunity, Cellular , Immunoglobulin G/therapeutic use , Israel , Multiple Sclerosis/drug therapy , RNA, Messenger/therapeutic use , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
13.
J Immunol Methods ; 502: 113230, 2022 03.
Article in English | MEDLINE | ID: covidwho-1720358

ABSTRACT

Innate immune mechanisms are central players in response to the binding of pathogens to pattern-recognition receptors providing a crucial initial block on viral replication. Moreover, innate immune response mobilizes cells of the cellular-mediated immune system, which develop into effector cells that promote viral clearance. Here, we observed circulating leukocyte T cell response in healthy subjects, COVID-19 infected, and in healthy vaccinated subjects. We found a significant CD8+ T cells (p < 0,05) decrease and an augmented CD4+/CD8+ ratio (p < 0,05) in COVID-19 infected group compared with vaccinated subjects. In addition, healthy vaccinated subjects have a significant increased expression of CD8+ T cells, and a reduction of CD4+/CD8+ ratio with respect to subjects previously COVID-19 infected. Central Memory and Terminal Effector Memory cells (TEMRA) increased after vaccine but not among groups.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Memory T Cells/immunology , Adult , Aged , CD4-CD8 Ratio , COVID-19/blood , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Case-Control Studies , Cross-Sectional Studies , Female , Healthy Volunteers , Humans , Immunity, Innate , Immunogenicity, Vaccine , Immunophenotyping , Male , Middle Aged , SARS-CoV-2/immunology , Vaccination
14.
Viruses ; 14(2)2022 01 28.
Article in English | MEDLINE | ID: covidwho-1667345

ABSTRACT

This study compared the immunogenicity of inactivated SARS-CoV-2 vaccines between people living with HIV (PLWH) and HIV-negative individuals. We recruited 120 PLWH and 53 HIV-negative individuals aged 18-59 years who had received an inactivated SARS-CoV-2 vaccine in two Chinese cities between April and June 2021. Blood samples were tested for immunogenicity of the inactivated SARS-CoV-2 vaccines. The prevalence and severity of adverse events associated with SARS-CoV-2 vaccines were similar between PLWH and HIV-negative individuals. The seropositivity of neutralizing activity against authentic SARS-CoV-2, of the total amount of antibody (total antibody) and of S-IgG were 71.3%, 81.9%, and 92.6%, respectively, among fully vaccinated PLWH. Among all participants, PLWH had lower neutralizing activity, total antibody, S-IgG, and T-cell-specific immune response levels, compared to HIV-negative individuals, after controlling for types of vaccine, time interval between first and second dose, time after receiving the second dose, and sociodemographic factors. PLWH with a longer interval since HIV diagnosis, who received their second dose 15-28 days prior to study commencement, and who had an interval of ≥21 days between first and second dose had higher neutralizing activity levels. The immunogenicity of the inactivated SARS-CoV-2 vaccines was lower among PLWH as compared to HIV-negative individuals. Vaccination guideline specific for PLWH should be developed.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/epidemiology , COVID-19/immunology , HIV Infections/epidemiology , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Vaccines, Inactivated/immunology , Adolescent , Adult , Antibodies, Neutralizing/blood , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , China/epidemiology , Cross-Sectional Studies , Female , HIV Infections/complications , HIV Infections/immunology , Humans , Male , Middle Aged , Vaccination , Vaccines, Inactivated/administration & dosage , Young Adult
15.
Liver Int ; 42(1): 180-186, 2022 01.
Article in English | MEDLINE | ID: covidwho-1488231

ABSTRACT

Limited data are available on risks and benefits of anti-SARS-CoV2 vaccination in solid organ transplant recipients, and weaker responses have been described. At the Italian National Institute for Infectious Diseases, 61 liver transplant recipients underwent testing to describe the dynamics of humoral and cell-mediated immune response after two doses of anti-SARS-CoV2 mRNA vaccines and compared with 51 healthy controls. Humoral response was measured by quantifying both anti-spike and neutralizing antibodies; cell-mediated response was measured by PBMC proliferation assay with IFN-γ and IL-2 production. Liver transplant recipients showed lower response rates compared with controls in both humoral and cellular arms; shorter time since transplantation and multi-drug immunosuppressive regimen containing mycophenolate mofetil were predictive of reduced response to vaccination. Specific antibody and cytokine production, though reduced, were highly correlated in transplant recipients.


Subject(s)
COVID-19 , Liver Transplantation , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity, Humoral , Leukocytes, Mononuclear , RNA, Messenger , RNA, Viral , SARS-CoV-2 , Transplant Recipients , Vaccination
16.
Br J Haematol ; 196(3): 548-558, 2022 02.
Article in English | MEDLINE | ID: covidwho-1467542

ABSTRACT

Patients affected by lymphoid malignancies (LM) are frequently immune-compromised, suffering increased mortality from COVID-19. This prospective study evaluated serological and T-cell responses after complete mRNA vaccination in 263 patients affected by chronic lymphocytic leukaemia, B- and T-cell lymphomas and multiple myeloma. Results were compared with those of 167 healthy subjects matched for age and sex. Overall, patient seroconversion rate was 64·6%: serological response was lower in those receiving anti-cancer treatments in the 12 months before vaccination: 55% vs 81·9% (P < 0·001). Anti-CD20 antibody plus chemotherapy treatment was associated with the lowest seroconversion rate: 17·6% vs. 71·2% (P < 0·001). In the multivariate analysis conducted in the subgroup of patients on active treatment, independent predictors for seroconversion were: anti-CD20 treatment (P < 0·001), aggressive B-cell lymphoma diagnosis (P = 0·002), and immunoglobulin M levels <40 mg/dl (P = 0·030). The T-cell response was evaluated in 99 patients and detected in 85 of them (86%). Of note, 74% of seronegative patients had a T-cell response, but both cellular and humoral responses were absent in 13·1% of cases. Our findings raise some concerns about the protection that patients with LM, particularly those receiving anti-CD20 antibodies, may gain from vaccination. These patients should strictly maintain all the protective measures.


Subject(s)
2019-nCoV Vaccine mRNA-1273/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , BNT162 Vaccine/administration & dosage , COVID-19 , Hematologic Neoplasms , Immunity, Cellular/drug effects , Lymphoproliferative Disorders , SARS-CoV-2/immunology , T-Lymphocytes/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Aged , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/immunology , Humans , Immunoglobulin M/immunology , Lymphoproliferative Disorders/drug therapy , Lymphoproliferative Disorders/immunology , Male , Middle Aged , Prospective Studies , Seroconversion
17.
J Cell Mol Med ; 25(2): 1274-1289, 2021 01.
Article in English | MEDLINE | ID: covidwho-978718

ABSTRACT

COVID-19 caused by SARS-CoV-2 is pandemic with a severe morbidity and mortality rate across the world. Despite the race for effective vaccine and drug against further expansion and fatality rate of this novel coronavirus, there is still lack of effective antiviral therapy. To this effect, we deemed it necessary to identify potential B and T cell epitopes from the envelope S protein. This can be used as potential targets to develop anti-SARS-CoV-2 vaccine preparations. In this study, we used immunoinformatics to identify conservative B and T cell epitopes for S proteins of SARS-CoV-2, which might play roles in the initiation of SARS-CoV-2 infection. We identified the B cell and T cell peptide epitopes of S protein and their antigenicity, as well as the interaction between the peptide epitopes and human leucocyte antigen (HLA). Among the B cell epitopes, 'EILDITPCSFGGVS' has the highest score of antigenicity and great immunogenicity. In T cell epitopes, MHC-I peptide 'KIADYNYKL' and MHC-II peptide 'LEILDITPC' were identified as high antigens. Besides, docking analysis showed that the predicted peptide 'KIADYNYKL' was closely bound to the HLA-A*0201. The results of molecular dynamics simulation through GROMACS software showed that 'HLA-A*0201~peptide' complex was very stable. And the peptide we selected could induce the T cell response similar to that of SARS-CoV-2 infection. Moreover, the predicted peptides were highly conserved in different isolates from different countries. The antigenic epitopes presumed in this study were effective new vaccine targets to prevent SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Vaccines/immunology , HLA-A Antigens/immunology , Histocompatibility Antigens Class II/immunology , Humans , Molecular Dynamics Simulation , Pandemics/prevention & control , Viral Vaccines/immunology
18.
Pathogens ; 9(12)2020 Dec 08.
Article in English | MEDLINE | ID: covidwho-969566

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic, a disease caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), was first identified in December 2019 in China, and has led to thousands of mortalities globally each day. While the innate immune response serves as the first line of defense, viral clearance requires activation of adaptive immunity, which employs B and T cells to provide sanitizing immunity. SARS-CoV-2 has a potent arsenal of mechanisms used to counter this adaptive immune response through processes, such as T cells depletion and T cell exhaustion. These phenomena are most often observed in severe SARS-CoV-2 patients, pointing towards a link between T cell function and disease severity. Moreover, neutralizing antibody titers and memory B cell responses may be short lived in many SARS-CoV-2 patients, potentially exposing these patients to re-infection. In this review, we discuss our current understanding of B and T cells immune responses and activity in SARS-CoV-2 pathogenesis.

19.
Immunity ; 53(4): 864-877.e5, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-693493

ABSTRACT

The SARS-CoV-2 pandemic has resulted in millions of infections, yet the role of host immune responses in early COVID-19 pathogenesis remains unclear. By investigating 17 acute and 24 convalescent patients, we found that acute SARS-CoV-2 infection resulted in broad immune cell reduction including T, natural killer, monocyte, and dendritic cells (DCs). DCs were significantly reduced with functional impairment, and ratios of conventional DCs to plasmacytoid DCs were increased among acute severe patients. Besides lymphocytopenia, although neutralizing antibodies were rapidly and abundantly generated in patients, there were delayed receptor binding domain (RBD)- and nucleocapsid protein (NP)-specific T cell responses during the first 3 weeks after symptoms onset. Moreover, acute RBD- and NP-specific T cell responses included relatively more CD4 T cells than CD8 T cells. Our findings provided evidence that impaired DCs, together with timely inverted strong antibody but weak CD8 T cell responses, could contribute to acute COVID-19 pathogenesis and have implications for vaccine development.


Subject(s)
Betacoronavirus/pathogenicity , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Coronavirus Infections/immunology , Dendritic Cells/immunology , Diabetes Mellitus/immunology , Hypertension/immunology , Pneumonia, Viral/immunology , Adult , Aged , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , COVID-19 , Convalescence , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Dendritic Cells/pathology , Dendritic Cells/virology , Diabetes Complications , Diabetes Mellitus/diagnosis , Diabetes Mellitus/virology , Disease Progression , Female , Humans , Hypertension/complications , Hypertension/diagnosis , Hypertension/virology , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Killer Cells, Natural/virology , Lymphocyte Activation , Lymphocyte Count , Male , Middle Aged , Monocytes/immunology , Monocytes/pathology , Monocytes/virology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index
20.
Virol Sin ; 35(6): 734-743, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-662445

ABSTRACT

Children with Coronavirus Disease 2019 (COVID-19) were reported to show milder symptoms and better prognosis than their adult counterparts, but the difference of immune response against SARS-CoV-2 between children and adults hasn't been reported. Therefore we initiated this study to figure out the features of immune response in children with COVID-19. Sera and whole blood cells from 19 children with COVID-19 during different phases after disease onset were collected. The cytokine concentrations, SARS-CoV-2 S-RBD or N-specific antibodies and T cell immune responses were detected respectively. In children with COVID-19, only 3 of 12 cytokines were increased in acute sera, including interferon (IFN)-γ-induced protein 10 (IP10), interleukin (IL)-10 and IL-16. We observed an increase in T helper (Th)-2 cells and a suppression in regulatory T cells (Treg) in patients during acute phase, but no significant response was found in the IFN-γ-producing or tumor necrosis factor (TNF)-α-producing CD8+ T cells in patients. S-RBD and N IgM showed an early induction, while S-RBD and N IgG were prominently induced later in convalescent phase. Potent S-RBD IgA response was observed but N IgA seemed to be inconspicuous. Children with COVID-19 displayed an immunophenotype that is less inflammatory than adults, including unremarkable cytokine elevation, moderate CD4+ T cell response and inactive CD8+ T cell response, but their humoral immunity against SARS-CoV-2 were as strong as adults. Our finding presented immunological characteristics of children with COVID-19 and might give some clues as to why children develop less severe disease than adults.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cytokines/blood , SARS-CoV-2/immunology , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/metabolism , Antibody Formation , CD8-Positive T-Lymphocytes , COVID-19/virology , Chemokines/blood , Child , Child, Preschool , Female , Humans , Immunity, Humoral , Immunoglobulin G/blood , Infant , Interferon-gamma/blood , Interleukin-10/blood , Male , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Th2 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL